# Technical Specification - Primary Microcontroller (m450-1)

- Scope
- Connectors
- High side outputs
- Low side outputs
- Digital Inputs
- Analog Inputs
- Internal Control Signals
- IsoSPI Communication
- Flash Code Output
- FEPS
- CAN
- BMU Blockset
  - Supported Blocks
  - Supplemental Blockset Information
- Diagnostic Service Information
  - Supported Diagnostic Services

# Scope

This technical specification associates signal names that are used in the platform software interfaces with hardware functionality. It is not meant to be a complete description of the functionality and capabilities of the BMU.

# Connectors

Low Voltage Connectors

| Pin     | Description                  | Туре              |
|---------|------------------------------|-------------------|
| J101-1  | Spare (AUXLSDD)              | Low side outputs  |
| J101-2  | AC Charge Positive Contactor | Low side outputs  |
| J101-3  | AC Charge Positive Contactor | High side outputs |
| J101-4  | AC Charge Negative Contactor | High side outputs |
| J101-5  | Spare (MHSDOUT11)            | High side outputs |
| J101-6  | Main Positive Contactor      | High side outputs |
| J101-7  | 12V Power (VBAT)             | Power             |
| J101-8  | 12V Ground (VBAT_NEG)        | Power             |
| J101-9  | AC Charge Negative Contactor | Low side outputs  |
| J101-10 | Main Positive Contactor      | Low side outputs  |
| J102-1  | Main Negative Contactor      | High side outputs |

| Pin     | Description                  | Туре              |  |
|---------|------------------------------|-------------------|--|
| J102-2  | DC Charge Positive Contactor | High side outputs |  |
| J102-3  | Pre-Charge                   | High side outputs |  |
| J102-4  | Switched Battery             | High side outputs |  |
| J102-5  | Redundant pack current       | Analog Inputs     |  |
| J102-6  | Battery Coolant              | Analog Inputs     |  |
| J102-7  | 5V Sensor supply (VREF)      | Supply            |  |
| J102-8  | DC Charge Negative Contactor | High side outputs |  |
| J102-9  | Main Negative Contactor      | Low side outputs  |  |
| J102-10 | DC Charge Positive Contactor | Low side outputs  |  |
| J102-11 | Pre-Charge                   | Low side outputs  |  |
| J102-12 | Switched Battery Ground      | Supply            |  |
| J102-13 | Spare (AIND)                 | Analog Inputs     |  |
| J102-14 | Spare (AINC)                 | Analog Inputs     |  |
| J102-15 | Sensor Ground Supply         |                   |  |
| J102-16 | DC Charge Negative Contactor | Low side outputs  |  |
| J103-1  | Spare (MHSDOUT10)            | High side outputs |  |
| J103-2  | Charge HVIL                  | High side outputs |  |
| J103-3  | Main HVIL                    | High side outputs |  |
| J103-4  | Primary Flash Code           | Flash Code Output |  |
| J103-5  | FEPS                         | FEPS              |  |
| J103-6  | Spare (DIGINPUTF)            | Digital Inputs    |  |
| J103-7  | Mod-CAN Low                  | CAN               |  |
| J103-8  | Mod-CAN High                 | CAN               |  |
| J103-9  | PT-CAN Low                   | CAN               |  |
| J103-10 | PT-CAN High                  | CAN               |  |
| J103-11 | Spare (AUXLSDC)              | Low side outputs  |  |
| J103-12 | Redundant CHVIL Status       | Low side outputs  |  |
| J103-13 | Redundant MHVIL Status       | Low side outputs  |  |
| J103-14 | Secondary Flash Code         | Reserved          |  |
| J103-15 | Vehicle Wake (Ignition)      | Wake              |  |
| J103-16 | Spare (DIGINPUTE)            | Digital Inputs    |  |
| J103-17 | Crash Signal                 | Digital Inputs    |  |
| J103-18 | Redundant contactor command  | Digital Inputs    |  |
| J103-19 | CHVIL Return                 | Digital Inputs    |  |
| J103-20 | MHVIL Return                 | Digital Inputs    |  |

High Voltage Connectors

| Pin    | Description   |
|--------|---------------|
| J104-1 | MOD_ISO_SPI_P |
| J104-2 | MOD_ISO_SPI_N |
| J104-3 | ISOSPI2E_P    |

| Pin     | Description      |
|---------|------------------|
| J104-4  | ISOSPI2E_N       |
| J104-5  | CHASSIS_GND      |
| J104-6  | CHASSIS_GND      |
| J104-7  | SHUNT_POS1       |
| J104-8  | SHUNT_NEG1       |
| J104-9  | NTC_H (V12)      |
| J104-10 | NTC_L            |
| J104-11 | SHUNT_NEG2       |
| J104-12 | SHUNT_POS2       |
| J105-1  | VBAT_POS         |
| J105-4  | VBUS_AC_POS (V3) |
| J105-6  | VBUS_DC_NEG (V6) |
| J105-8  | VBAT_NEG         |
| J105-10 | VBUS_POS (V1)    |
| J105-12 | VBUS_DC_POS (V5) |
| J105-14 | FUSE_HS (V7)     |
| J105-16 | FUSE_LS (V8)     |
| J105-18 | VBUS_AC_NEG (V4) |
| J105-20 | VBUS_NEG (V2)    |

# High side outputs

Note: SBAT must be enabled in order for high side outputs to work.

| Function              | Control Signal | Gate Monitor | Voltage Monitor    | Current<br>Monitor |
|-----------------------|----------------|--------------|--------------------|--------------------|
| Main Positive         | MHSDOUTO       | HSGATE0      | MAIN_P_PWR_SENSE   | HSDCSNS0           |
| Main Negative         | MHSDOUT1       | HSGATE1      | MAIN_N_PWR_SENSE   | HSDCSNS1           |
| DC Charge<br>Positive | MHSDOUT2       | HSGATE2      | DC_CHG_P_PWR_SENSE | HSDCSNS1           |
| DC Charge<br>Negative | MHSDOUT3       | HSGATE3      | DC_CHG_N_PWR_SENSE | HSDCSNS2           |
| AC Charge<br>Positive | MHSDOUT4       | HSGATE4      | AC_CHG_P_PWR_SENSE | HSDCSNS0           |
| AC Charge<br>Negative | MHSDOUT5       | HSGATE5      | AC_CHG_N_PWR_SENSE | HSDCSNS0           |
| Precharge             | MHSDOUT6       | HSGATE6      | PRECHG_PWR_SENSE   | HSDCSNS1           |
| Switched<br>Battery   | MHSDOUT7       | HSGATE7      | SWB_PWR_SENSE      | HSDCSNS1           |
| Charge HVIL           | MHSDOUT8       | HSGATE8      | CHVIL_SRC          | HSDCSNS2           |
| Main HVIL             | MHSDOUT9       | HSGATE9      | MHVIL_SRC          | HSDCSNS2           |
| Spare                 | MHSDOUT10      | none         | HSDVAIN10          | HSDCSNS2           |
| Spare                 | MHSDOUT11      | none         | HSDVAIN11          | HSDCSNS0           |
| Voltage monito        | )re '          |              |                    |                    |

voltage monitors:

To convert measured voltage (Vm) to actual voltage (Va) use the equation, Va=Vm\*3.938 **Current monitors:** 

To convert measured voltage (Vm) to current (I) use the equation, I=Vm\*0.497

The high side outputs are driven by ASICs that control four output channels each. The ASICs are capable of reporting the current monitor signal for one channel concurrently per device. The HSDSEL signals determines which outputs are monitored.

The current monitor signals serve a dual purpose. The output must be configured to produce a steady state output rather than a PWM to serve either purpose.

- 1. If there are not any hard faults (shorts, over-temperature, over-current, open load off), then the signals will report current according to the transfer function.
- 2. If a hard fault is detected, then the signal will indicate a fault condition by reporting Vm = 5V.

Since the fault value overlaps the valid current range, these signals are most suitable for detecting open load in the off state.

| HSDSEL1 State | HSDSEL0 State | Current Sense signal | Output current monitored |
|---------------|---------------|----------------------|--------------------------|
| 0             | 0             | HSDCSNS0             | Main Positive            |
| 0             | 1             | HSDCSNS0             | MHSDOUT11                |
| 1             | 0             | HSDCSNS0             | AC Charge Negative       |
| 1             | 1             | HSDCSNS0             | AC Charge Positive       |
| 0             | 0             | HSDCSNS1             | Switched Battery         |
| 0             | 1             | HSDCSNS1             | Precharge                |
| 1             | 0             | HSDCSNS1             | DC Charge Positive       |
| 1             | 1             | HSDCSNS1             | Main Negative            |
| 0             | 0             | HSDCSNS2             | Main HVIL                |
| 0             | 1             | HSDCSNS2             | Charge HVIL              |
| 1             | 0             | HSDCSNS2             | MHSDOUT10                |
| 1             | 1             | HSDCSNS2             | DC Charge Negative       |

# Low side outputs

|                       |                | Gate     |                 |                  |
|-----------------------|----------------|----------|-----------------|------------------|
| Function              | Control Signal | Monitor  | Voltage Monitor | Current Monitor  |
| Main<br>Positive      | MAIN_P_DRV     | LSDGATE0 | MAIN_P_V_SENSE  | MAIN_P_CURRENT   |
| Main<br>Negative      | MAIN_N_DRV     | LSDGATE1 | MAIN_N_V_SENSE  | MAIN_N_CURRENT   |
| DC Charge<br>Positive | DC_CHG_P_DRV   | LSDGATE2 | DC_CHG_P_SENSE  | DC_CHG_P_CURRENT |
| DC Charge<br>Negative | DC_CHG_N_DRV   | LSDGATE3 | DC_CHG_N_SENSE  | DC_CHG_N_CURRENT |
| AC Charge<br>Positive | AC_CHG_P_DRV   | LSDGATE4 | AC_CHG_P_SENSE  | AC_CHG_P_CURRENT |
| AC Charge<br>Negative | AC_CHG_N_DRV   | LSDGATE5 | AC_CHG_N_SENSE  | AC_CHG_N_CURRENT |

| Control Signal | Gate<br>Monitor                                                          | Voltage Monitor                                                                       | Current Monitor                                                                                                                                  |
|----------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| PRECHG_DRV     | LSDGATE6                                                                 | PRECHG_SENSE                                                                          | PRECHG_CURRENT                                                                                                                                   |
| AUXLSDA        | LSDGATE7                                                                 | VAUXLSD0                                                                              | none                                                                                                                                             |
| AUXLSDB        | LSDGATE8                                                                 | VAUXLSD1                                                                              | none                                                                                                                                             |
| AUXLSDC        | none                                                                     | VAUXLSD2                                                                              | none                                                                                                                                             |
| AUXLSDD        | none                                                                     | VAUXLSD3                                                                              | none                                                                                                                                             |
|                | Control Signal<br>PRECHG_DRV<br>AUXLSDA<br>AUXLSDB<br>AUXLSDC<br>AUXLSDD | Gate<br>MonitorPRECHG_DRVLSDGATE6AUXLSDALSDGATE7AUXLSDBLSDGATE8AUXLSDCnoneAUXLSDDnone | Gate<br>MonitorVoltage MonitorPRECHG_DRVLSDGATE6PRECHG_SENSEAUXLSDALSDGATE7VAUXLSD0AUXLSDBLSDGATE8VAUXLSD1AUXLSDCnoneVAUXLSD2AUXLSDDnoneVAUXLSD3 |

#### Voltage monitors:

To convert measured voltage (Vm) to actual voltage (Va) use the equation, Va=Vm\*3.938 **Current monitors:** 

To convert measured voltage (Vm) to current (I) use the equation, I= Vm\*2.174

**Note:** The AUXLSDD PWM output does now have its own internal counters. It is configured to share the counters of AUXLSDC. As a result, the output will operate at a frequency that is different from the frequency commanded by the block. It will always operate at the frequency commanded by the AUXLSDC block.

# **Digital Inputs**

| Signal Name  | Description                 |
|--------------|-----------------------------|
| CTR_CMD      | Redundant contactor command |
| CRASH        | Crash Signal                |
| MHVIL_RTN_IN | MHVIL Return                |
| CHVIL_RTN_IN | CHVIL Return                |
| DIGINPUTE    | Spare Digital Input         |
| DIGINPUTF    | Spare Digital Input         |
|              |                             |

# **Analog Inputs**

| Signal Name | Description                            | Transfer function            |
|-------------|----------------------------------------|------------------------------|
| COOL_AI     | Battery Coolant                        | Va = Vm * 4.000              |
| AINC        | Spare Analog input                     | Va = Vm * 4.000              |
| AIND        | Spare Analog Input                     | Va = Vm * 4.000              |
| LEM_AI      | Redundant pack current                 | Va = Vm * 4.000              |
| VIGNWAKE    | Ignition                               | Va = Vm * 5.700              |
| FEPS        | FEPS                                   | Va = (Vm - 4.123) *<br>5.700 |
| LV_SUPPLY   | Internal Low voltage supply monitor    | Va = Vm * 8.000              |
| SENS_SUPPLY | Internal Sensor supply voltage monitor | Va = Vm * 1.162              |
| +5V8        | Internal 5V8 supply voltage monitor    | Va = Vm * 2.000              |
| VDD         | Internal VDD voltage monitor           | Va = Vm * 2.000              |
| +3V3        | Internal 3V3 voltage monitor           | Va = Vm * 1.000              |
| VDC         | Internal VDC voltage monitor           | Va = Vm * 1.000              |
| VDC2        | Internal VDC2 voltage monitor          | Va = Vm * 1.000              |

Note: the transfer function describes how to convert measured voltage (Vm) to actual voltage (Va)

# Internal Control Signals

#### SBATENAB:

Enables switched battery

- 1 enabled
- 0 disabled

#### **HSDSEL:**

Determines which outputs are current monitored.

• See High side outputs

#### NREFEN1::

Enables sensor reference supply.

- 0 enabled
- 1 disabled

#### **RIP\_STATUS:**

Interprocessor status signal.

· Conveys an application defined status between the two microcontrollers

#### NRESET2:

Secondary microcontroller reset

- 1 Enable the secondary microcontroller
- 0 Reset the secondary microcontroller

#### HOLDON:

Primary microcontroller power hold signal for keeping both microcontrollers awake in the absence of another wake source.

- 1 Keep ECU awake
- 0 Allow ECU to sleep if other wake sources are not present

# IsoSPI Communication

Two Linear Technologies isoSPI interfaces are implemented.

| Name            | Description                          |
|-----------------|--------------------------------------|
| External IsoSPI | External IsoSPI interface            |
| Internal IsoSPI | Internal LTC2949 IsoSPI<br>interface |

A decoder selection signal for external IsoSPI direction is available. The external IsoSPI may be routed to either of two LTC6820 devices. If the external daisy chain consists of LTC6810s, then one LTC6820 may be connected to each end of the daisy chain.

| ISOSPI_DIR | Active Connection | 6820CS0_N state | 6820CS1_N state |
|------------|-------------------|-----------------|-----------------|
| 0          | MOD_ISO_SPI       | 0               | 1               |
| 1          | ISOSPI2E          | 1               | 0               |

6820CS0\_N, 6820CS1\_N are chip select monitor signals that may be used to confirm the correct operation of ISOSPI\_DIR. They are only read by the secondary microcontroller.

# Flash Code Output

The ECU has a dedicated external low side driver suitable for flashing an LED.

The flash sequence represents a set of codes. Each code is a three digit number, where each digit is flashed a number of times equal to its value. An example would be the flash sequence for code 113. The flash sequence is broken down into a series of marks, or on and off pulses as follows:



Each of the marks lasts for a specific duration:

| Mark              | Duration and meaning                                                                           |
|-------------------|------------------------------------------------------------------------------------------------|
| Start of log mark | 3s — marks the start of the flash code list                                                    |
| Digit mark        | 1s — marks the start of a digit                                                                |
| dn                | ns — n digits, where the output is turned OFF for 0.5 second, then ON for 0.5 seconds, n times |
| End code mark     | 3s — marks the end of a code (i.e., end of 3 digits)                                           |

After the end code mark, the ECU will either flash the next code, or return to the start of the list and flash the first code. The ECU always has at least one code to flash.

Each code represents information about the ECU state. If there is no flash sequence, or a malformed flash sequence, then the ECU is malfunctioning. Otherwise, the flash sequence will represent one of the following codes:

| Code | Meaning                                                              |
|------|----------------------------------------------------------------------|
| 111  | In application mode — no other condition has been detected.          |
| 112  | In reprogramming mode with the FEPS pin negative.                    |
| 113  | In reprogramming mode with the FEPS pin high.                        |
| 114  | In reprogramming mode via a FEPS-less reprogramming request.         |
| 115  | In reprogramming mode because no valid application software exists.  |
| 116  | In reprogramming mode due to FEPS pin electrical failure.            |
| 117  | In reprogramming mode due to repeated reset during application mode. |
| 118  | In reprogramming mode due to failed application checksum tests.      |
| 128  | In reprogramming mode due to failed memory check tests.              |

| Code | Meaning                                                                  |
|------|--------------------------------------------------------------------------|
| 119  | In reprogramming mode due to a FEPS-less ISO reprogramming request.      |
| 121  | In reprogramming mode due to an unknown failure.                         |
| 123  | In reprogramming mode due to a watchdog reset.                           |
| 222  | In reprogramming mode due to the application not having a valid license. |

# FEPS

The ECU can run in one of two system modes: reprogramming mode and application mode. In reprogramming mode, both processors of the ECU can be reprogrammed with application software from a calibration tool. In application mode, the ECU runs the programmed application software.

The ECU enters reprogramming mode either by measuring a dedicated external pin called FEPS at power up, or when attempting to reflash over CCP when the application is not inhibiting reprogramming.

| Voltage | System mode                                             |                                                                                         |
|---------|---------------------------------------------------------|-----------------------------------------------------------------------------------------|
| < -16V  | Enter reprogramming mode. Use the default CCP settings: |                                                                                         |
|         | Bus:                                                    | PT-CAN                                                                                  |
|         | Baud rate:                                              | 500kbps                                                                                 |
|         | CRO:                                                    | 0x6F9                                                                                   |
|         | DTO:                                                    | 0x6F8                                                                                   |
|         | Station:                                                | 0                                                                                       |
|         | Use the default UDS settings:                           |                                                                                         |
|         | Bus:                                                    | PT-CAN                                                                                  |
|         | Baud rate:                                              | 500kbps                                                                                 |
|         | Functional                                              | <b>ID:</b> 0x7DF                                                                        |
|         | Physical ID                                             | : 0x7E0                                                                                 |
|         | Response I                                              | <b>D:</b> 0x7E8                                                                         |
| > -16V  | Enter application programmed, oth                       | mode if valid application software has previously been erwise enter reprogramming mode. |

# CAN

Three CAN interfaces are implemented:

| Name    | Description                                      |
|---------|--------------------------------------------------|
| PT-CAN  | Vehicle power-train CAN                          |
| MOD-CAN | Battery internal CAN                             |
| SEC-CAN | BMU internal CAN to secondary<br>microcontroller |

**Note:** Reprogramming over CAN is only supported when the Vehicle Wake (Ignition) signal is asserted.

# **BMU Blockset**

# Supported Blocks

The BMU supports the following blocks from the OpenECU blockset.

**Note:** The BMU blockset functionality sometimes differs from that described by OpenECU blockset documentation. Each block below references supplemental information to clarify BMU functionality and feature support.

**Note:** Many blocks include provisions to support simulation behaviors. This functionality is provided for convenience only. The behavior under simulation is not guaranteed to corresponds to the behavior of the embedded software.

- brtc\_Control
- bspi\_Transaction
- bspi\_TransactionStatus
- pai\_BasicAnalogInput
- pcp\_CCPConfiguration
- pcp\_CCPInhibitReprogramming
- pcp\_CCPRxCount
- pcp\_CCPSecurity
- pcp\_RasterConfig
- pcx\_BusStatus
- pcx\_CANConfiguration
- pcx\_CANReceiveMessage
- pcx\_CANTransmitMessage
- pcx\_CANdb\_ReceiveMessage
- pcx\_CANdb\_TransmitMessage
- pdd\_DataInput
- pdg\_ExtendedDataRecord
- pdg\_InfotypeInput
- pdg\_Permissions
- pdg\_RoutineControl
- pdtc\_ClearAll
- pdtc\_ClearAllIfActive
- pdtc\_ClearAllIfInactive
- pdtc\_ClearDtcs
- pdtc\_Control
- pdtc\_DiagnosticTroubleCodeExt
- pdtc\_EnablePeriodicLampUpdates
- pdtc\_MatchExists
- pdtc\_Memory
- pdtc\_Table
- pdtc\_TableCleared
- pdx\_DigitalInput
- pdx\_DigitalOutput

- pdx\_PWMVariableFrequencyOutput
- pff\_Configuration
- pff\_FreezeFrame
- piso\_Configuration
- pkn\_TaskDuration
- pkn\_TaskPeriodOverrun
- pmem\_MemoryConfiguration
- pnv\_File
- pnv\_FileFlush
- pnv\_FileStats
- pnv\_FilesystemInfo
- ppid\_Pid
- ppid\_Scaling
- preg\_RetrieveKey
- psc\_AppBuildDate
- psc\_AppVersion
- psc\_CpuLoading
- psc\_CvnCalc
- psc\_KickWatchdog
- psc\_PlatformBuildDate
- psc\_PlatformPartNumber
- psc\_PlatformVersion
- psc\_PrgBuildDate
- psc\_PrgPartNumber
- psc\_PrgVersion
- psc\_ResetCount
- psc StackUsed
- psc\_UnstableResetCount
- ptm\_RealTime
- put\_Identification
- put\_Reset

# Supplemental Blockset Information

Additional considerations for the BMU blockset are captured here.

# brtc\_Control

The RTC device must be reset by the application following an RTC generated wake event. If the device is not reset, then then the circuit responsible for waking the ECU will continue to dissipate power. Failure to reset the device in a timely manner when FUSE\_LS voltages are above 350V at maximum operating temperature may damage the hardware.

#### bspi\_Transaction

None.

None.

# pai\_BasicAnalogInput

None.

# pcp\_CCPConfiguration

If no configuration block exists in the model, CCP communications are disabled when the model is running. When reprogramming, the following default settings are used:

 CRO:
 0x6F9

 DTO:
 0x6F8

 Station:
 0

#### pcp\_CCPInhibitReprogramming

None.

pcp\_CCPRxCount

None.

# pcp\_CCPSecurity

#### Limitations

• No delay is enforced following failed seed-key exchanges.

#### **Known Behaviors**

• "Calibration" access is not required to obtain "Data acquisition" access.

# pcp\_RasterConfig

#### Limitations

• A combined maximum of 120 ODTs may be configured, not 254 as the user documentation suggests.

## pcx\_BusStatus

None.

pcx\_CANConfiguration

#### Limitations

• Only 500 kBps baud rate is in scope.

# pcx\_CANReceiveMessage

#### Limitations

• Field start bit, width, sign, and type codes are not configurable.

#### Known Behaviors

#### Field Mnemonics

- Providing fewer than 8 entries in the "Field Mnemonics" parameter will result in some outports not being named. The signals at the unnamed outports may still be used.
- Providing greater than 8 entries in the "Field Mnemonics" parameter will result in corruption in the mask displayed on the block but the outport signals will be usable as normal.

#### Outport behavior deviations/clarifications:

• error\_flag:

The error\_flag port is *not* set to 1 due to a detected bus-off state. The error\_flag port is *not* set to 1 when the bus specified for reception is not configured.

• rx\_trig\_flag:

The rx\_trig\_flag is set *whenever* a message of the specified ID is received and the data-link layer checksum is valid. It is set *even if the message length differs from the expected length*.

#### pcx\_CANTransmitMessage

#### Limitations

• Field start bit, width, sign, and type codes are not configurable.

#### **Known Behaviors**

#### Field Mnemonics

- Providing fewer than 8 entries in the "Field Mnemonics" parameter will result in some inports not being named. The signals at the unnamed inports may still be used.
- Providing greater than 8 entries in the "Field Mnemonics" parameter will result in corruption in the mask displayed on the block but the inport signals will be usable as normal.

#### Limitations

- A platform managed checksum in the final byte is out of scope.
- CANdb signals of type "double" are not supported.
- Reception of CANdb messages *without* signals is not supported.

#### **Known Behaviors**

Loss of precision/accuracy:

Limitations described for the pcx\_CANdb\_TransmitMessage block apply to this block as well.

Outport behavior deviations/clarifications:

• error\_flag:

The error\_flag port is *not* set to 1 due to a detected bus-off state. It *is* set if the received message length differs from that specified by the CANdb. The error\_flag port is *not* set to 1 when the bus specified for reception is not configured.

• rx\_trig\_flag:

The rx\_trig\_flag is set *whenever* a message of the specified ID is received and the data-link layer checksum is valid. It is set *even if the message length differs from the expected length*.

• timestamp:

This timestamp is updated whenever the rx\_trig\_flag is set.

• Signal ports:

Signal ports are updated whenever the rx\_trig\_flag is set. During simulation, raw signal outports are inappropriately clipped to engineering values.

**Warning:** The outports may contain invalid values if the received message length differs from the expected.

All CAN message signals should latched by application logic only when rx\_trig\_flag is set and error\_flag is not set.

• RAW Signal ports:

The RAW values are always reported as unsigned integers. If the CANdb signal is signed, then the application is responsible for conversion into a signed value. 32-bit signals may be converted by

casting. Signals less than 32-bits must be sign extended to 32-bits prior to casting.

# pcx\_CANdb\_TransmitMessage

#### Limitations

- A platform managed checksum in the final byte is out of scope.
- CANdb signals of type "double" are not supported.
- Transmission of CANdb messages *without* signals is not supported.

#### **Known Behaviors**

Loss of precision/accuracy:

Platform conversion between raw and engineering values can result in loss of precision/accuracy. (The block temporarily converts all signals to single-precision floating point numbers while applying linear conversions.)

- 1. Engineering values are typically packed/unpacked with accuracy of +/- the CANdb scale factor for that signal.
- 2. If the signal length is greater than 23 bits, greater error may occur due to floatingpoint precision loss.

Example 1: Consider a transmit block that sends a temperature (in degrees Fahrenheit) packed as an 8-bit integer with scale 2 and offset 0. A block input value of 89.9 is packed and transmitted as either 88 or 90.

Example 2: Consider a receive block that extracts a rolling counter packed as a 32-bit integer with scale 1 and offset 0. A count value of 4294967060 (that is, 2^32 - 236) is unpacked as 4294967040 (an error of -20).

**Warning:** Floating-point precision loss can cause extreme values of a data type to be packed/unpacked with large error (e.g. 2^27 - 1 is packed as "0" in a unsigned integer of length 27). This may be avoided by carefully specifying the engineering limits (e.g. [0, 134217720] in the case of a 27-bit unsigned integer).

Outport clarifications:

• Request, overwrite, and ack counters wrap after reaching 65535.

#### pdd\_DataInput

None.

pdg\_ExtendedDataRecord

None.

# pdg\_InfotypeInput

None.

# pdg\_Permissions

None.

# pdg\_RoutineControl

None.

# pdtc\_ClearAll

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

# pdtc\_ClearAllIfActive

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

# pdtc\_ClearAllIfInactive

#### **Known Behaviors**

• Previously active DTCs are considered inactive.

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

# pdtc\_ClearDtcs

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

# pdtc\_Control

None.

# pdtc\_DiagnosticTroubleCodeExt

Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

### pdtc\_EnablePeriodicLampUpdates

None.

### pdtc\_MatchExists

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

#### pdtc\_Memory

#### Limitations

• Storage location 'Battery Backed RAM' is not supported.

### pdtc\_Table

#### None.

# pdtc\_TableCleared

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

# pdx\_DigitalInput

None.

# pdx\_DigitalOutput

#### **Known Behaviors**

• A sample time parameter is not present. The block inherits sample time from the signals connected to inports.

# pdx\_PWMVariableFrequencyOutput

#### Limitations

- The minimum output frequency is ~24 Hz.
- The offset parameter is not supported.

#### **Known Behaviors**

- The 'Minimum duty cycle' parameter range is [0,0.9].
- The 'Maximum duty cycle' parameter range is [0.1,1].

# pff\_Configuration

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

# pff\_FreezeFrame

#### Limitations

• J1939 DTCS and associated functionality/parameters are out of scope.

#### **Known Behaviors**

- It is possible to configure a single freeze frame block for both J1979 (freeze frame) and UDS (snapshot). If this occurs, then the both the freeze frame and the snapshot will follow the J1979 deletion rules.
- PIDs that are not defined in the application may be listed in the PIDs to capture field. The application will build, but the freeze frame may not behave as expected during runtime.
- Non-volatile PIDs may be listed in the PIDs to capture field. The application will build, but the freeze frame may not behave as expected during runtime.

# piso\_Configuration

#### **Known Behaviors**

- The "Functional receive ID" value is used only during application execution. "0x7DF" is always used by the firmware. The physical request and response IDs configured by the application, however, are used by the firmware if the application is valid.
- The Service \$03 response parameter must be set to "Transmit Active and Previously Active DTCs" to provide J1979 compliant Service \$03 behavior.

# pkn\_TaskDuration

#### Limitations

• The "Sample time (task)" and "Sample time (block)" parameters are restricted to the range [0.001, 53] seconds instead of the documented range of [0.001, 3600] seconds to ensure accurate task durations reported by this block. The "duration" outport is restricted to the range [0, 53000000] microseconds.

# pkn\_TaskPeriodOverrun

#### Limitations

• This block reports overruns for application defined tasks. There are several tasks that are defined by the platform software rather than the application configuration. The platform defined tasks must also be monitored for skips and overruns. Platform task skips and overruns are reported by the pdd\_DataInput block.

### pmem\_MemoryConfiguration

Two memory configurations are supported.

#### **Configuration Description**

| Α | On-line calibration <b>enabled</b>   |
|---|--------------------------------------|
| B | On-line calibration <b>disabled</b>  |
| D | en inte cambration <b>algabiea</b> . |

When on-line calibrations are disabled, calibrations are read directly from flash.

| onv_File           |  |
|--------------------|--|
| None.              |  |
| onv_FileFlush      |  |
| None.              |  |
| onv_FileStats      |  |
| None.              |  |
| onv_FilesystemInfo |  |
| None.              |  |
| ppid Pid           |  |

#### Limitations

• Mask dialog check box parameters "KWP (8-bit)" and "J1939 (SPN)" are not in scope and should not be checked.

#### Mask Visibility Rules:

- "1979 (8 bit)" check box is visible if "Non-volatile storage" is not checked.
- J1979 (8 bit) "ID" select box is visible if "J1979 (8 bit)" is checked.
- "ISO (16 bit)" check box is always be visible.
- ISO (16 bit) "ID" select is visible if "ISO (16 bit)" is checked.
- "ReadScalingByldentifier (UDS \$24) support" check box is visible if

• "ISO (16 bit)" is checked.

- "Non-volatile storage" is *not* checked.
- "Scaling Data Type" select box is visible if "ReadScalingByIdentifier (UDS \$24) support" is checked.
- "Number of data bytes" text box is visible if "Scaling data type" is *not* "F: Manually enter scaling bytes".
- "Mask Bytes" is visible if "Scaling Data Type" is "2: Bit Mapped specify mask below".
- "Manual entry scaling bytes" text box is visible if "Scaling data type" *is* "F: Manually enter scaling bytes".
- "Specify scaling formula?" check box is visible if "Scaling data type" is one of the following:
  - "0: Unsigned Numeric"
  - "1: Signed Numeric"
  - "4. Binary Coded Decimal"
  - "5. State Encoded Variable"
  - "6. ASCII"
  - "7: Signed Floating Point"
  - "8: Packet"
- "Formula type" select box is visible if "Specify scaling formula?" is checked.
- "C0" text box is visible if:
  - "Specify scaling formula?" is checked.
  - "Formula type" contains "C0" in the selected formula.
- "C1" text box is visible if:
  - "Specify scaling formula?" is checked.
  - "Formula type" contains "C1" in the selected formula.
- "C2" text box is visible if:
  - "Specify scaling formula?" is checked.
  - "Formula type" contains "C2" in the selected formula.
- "Custom Formula Bytes" text box is visible if:
  - "Specify scaling formula?" is checked.
  - "Formula type" is "A: custom / manufacturer defined"
- "Specify engineering units?" check box is visible if "Scaling data type" is one of the following:
  - "0: Unsigned Numeric"
  - "1: Signed Numeric"
  - "4. Binary Coded Decimal"
  - "5. State Encoded Variable"

- "6. ASCII"
- "7: Signed Floating Point"
- "8: Packet"
- "Units" select box is visible if "Specify engineering units?" is checked.
- "Use Unit Prefix?" check box is visible if "Specify engineering units?" is checked.
- "Unit prefix" select box is visible if "Use Unit Prefix?" is checked.
- "Specify state and connection type?" check box is visible if "Scaling data type" is *not* "F: Manually enter scaling bytes".
- "Signal Type" select box is visible if "Specify state and connection type?" is checked.
- "Active State Definition" select box is visible if "Specify state and connection type?" is checked.
- "Active Signal Definition" is visible if "Specify state and connection type?" is checked.
- "Signal HW Configuration"\*\* is visible if "Specify state and connection type?" is checked.
- "Scaling bytes sent to test tool"\*\* is visible if "ReadScalingByIdentifier (UDS \$24) support" is checked.
- "Allows IOControl" check box is visible if
  - "ISO (16 bit)" is checked.
  - "Non-volatile storage" is *not* checked.
- "Resend input as output" check box is visible if "Allows IOControl" is checked.
- "Number of controlEnableMask bytes expected" text box is visible if "Allows IOControl" is checked.

#### **Known Behaviors**

- "String PID" check box and associated parameters are not accessible.
- The "write\_to\_nv" inport is rising-edge triggered.
- Fields may remain when configurations are changed in the block that should cause them to be hidden. These fields may be ignored. Alternately the block may be replaced with a new copy added from the library.
- Extra outports may remain when configurations are changed in the block. They are corrected when the diagram is updated or the model is built
- Fields that are automatically added or hidden may not appear automatically following a change. To ensure the correct fields are present, always use the 'apply' button to apply the change.
- The 'Specify State and Connection Type' may be hidden in some circumstances when it should be available. It can be avoided by replacing the block with a new copy from the library, and avoiding selecting and de-selecting unnecessary configuration options.
- The 'write\_to\_nv' inport is rising edge triggered.

• "Scaling bytes sent to test tool" text box is never enabled for editing. It is a read only field intended to provide information to the developer.

# ppid\_Scaling None. preg\_RetrieveKey None. psc\_AppBuildDate None. psc\_AppVersion None. psc\_CpuLoading None.

#### **Known Behaviors**

- when runtime calibration changes are made via CCP, the currently calculated CVN will be invalidated, and the "available" outport will be set to FALSE until the CVN is recalculated with a rising edge on the "trigger" inport.
- after the CVN has been calculated for the first time, it will be automatically stored in NVM, and recalled by the block during initialization on the next reset. The "available" and "cvn" outport will be updated with the previously calculated results after a power cycle.

#### psc\_KickWatchdog

The watchdog expires after one timer period. If no psc\_KickWatchdog block is present in the model, the platform kicks the watchdog periodically in a low priority task.

| Description                 | Period (ms) |
|-----------------------------|-------------|
| Watchdog Timeout            | 120         |
| Platform Watchdog Servicing | 60          |

# psc\_PlatformBuildDate

None.

# psc\_PlatformPartNumber

None.

| nec DistformVersion    |
|------------------------|
| psc_Platformversion    |
| None.                  |
| psc_PrgBuildDate       |
| None.                  |
|                        |
| psc_PrgPartNumber      |
| None.                  |
| psc_PrgVersion         |
| None                   |
| None.                  |
| psc_ResetCount         |
| None.                  |
| psc_StackUsed          |
|                        |
| None.                  |
| psc_UnstableResetCount |
| None.                  |
|                        |
| ptm_RealTime           |
| None.                  |
| put_Identification     |
| Limitations            |

• Only "Generic Pin Naming" applies.

#### **Known Behaviors**

• Non-volatile memory storage fails if any of the major/minor/sub-minor version numbers exceed 255.

Warning: The application developer must ensure all version numbers are within [0, 255].

- The *mpl\_* automatic ASAP2 entries are not available when Simulink data dictionaries are used.
- The "Application name" mask parameter %target% token is replaced by M550\_000 instead of BMU\_000.

### put\_Reset

#### **Known Behaviors**

- The *fp\_reset* outport will never be set. Floating point exceptions are disabled.
- The *boot\_duration* outport reports the boot duration incorrectly at half of the actual boot duration.

# Diagnostic Service Information

# Supported Diagnostic Services

The BMU supports the following diagnostic services. This list is a subset of the services described in the OpenECU user guide.

# J1979 Service 0x01

#### **Request Current Powertrain Diagnostic Data**

This service reports J1979 8-bit PIDs

#### Justification

Support provided as a result of a direct requirement in the SOR.

#### Associated blocks:

- ppid\_Pid
- piso\_Configuration

# J1979 Service 0x02

#### **Request Powertrain Freeze Frame Data**

This service reports emissions related freeze frames

#### Justifications

Support provided as a result of a requirement in the SOR to capture J1979 freeze frames.

#### Associated blocks:

- ppid\_Pid
- pff\_FreezeFrame
- piso\_Configuration

#### **Request Emission-Related Diagnostic Trouble Codes**

This service reports only DTCs that are classified as emissions related Justification: Supported as a result of a direct requirement in the SOR.

#### Justification

Supported provided as a result of a direct requirement in the SOR.

#### Associated blocks

- pdtc\_DiagnosticTroubleCodeExt
- piso\_Configuration

#### **Negative Response Codes**

0x12 subFunctionNotSupported-InvalidFormat

# J1979 Service 0x04

#### **Clear/Reset Emission-Related Diagnostic Information**

Clears only DTCs defined as emission-related

#### Justification

Supported provided as a result of a direct requirement in the SOR.

#### Associated blocks

- pdtc\_DiagnosticTroubleCodeExt
- piso\_Configuration

#### **Negative Response Codes**

0x22 conditionsNotCorrectOrRequestSequenceError

# J1979 Service 0x07

# Request Emission-Related Diagnostic Trouble Codes Detected During Current or Last Completed Driving Cycle

Fetch pending diagnostic trouble codes

#### Justification

Supported provided as a result of a direct requirement in the SOR.

#### Associated Blocks

- pdtc\_DiagnosticTroubleCodeExt
- piso\_Configuration

#### **Negative Response Codes**

0x12 subFunctionNotSupported-InvalidFormat

# J1979 Service 0x09

**Request Vehicle Information** 

Request vehicle specific information

#### Justification

Supported provided as a result of a direct requirement in the SOR.

#### **Associated Blocks**

• pdg\_InfotypeInput

# J1979 Service 0x0A

#### **Request Emission-Related Diagnostic Trouble Codes with Permanent Status**

Fetch confirmed DTCs with permanent status

#### Justification

Supported provided as a result of a direct requirement in the SOR.

#### **Associated Blocks**

- pdtc\_DiagnosticTroubleCodeExt
- piso\_Configuration

#### **Negative Response Codes**

0x12 subFunctionNotSupported-InvalidFormat

# UDS Service 0x10

#### **DiagnosticSessionControl**

Enables different diagnostic sessions

#### Justification

Required for access to reprogramming mode and some other services

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x22 conditionsNotCorrect
- 0x78 requestCorrectlyReceived-ResponsePending

#### **Associated Blocks**

- pdg\_Permissions
- pdd\_DataInput

# UDS Service 0x11

#### ECUReset

Request the ECU to reset

#### Justification

Required for transition from firmware to application after reprogramming

#### Limitations

- · Supported in reprogramming mode only
- Physical ID only

- Limited subfunction support:
  - 0x01 (Hard reset)
  - 0x03 (soft reset)

#### **Negative Response Codes**

- 0x11 serviceNotSupported
- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat

# UDS Service 0x14

#### ClearDiagnosticInformation

Clears diagnostic information from memory

#### Justification:

Required for clearing stored DTC and snapshot information

#### Associated Blocks

ppid\_Pid pff\_FreezeFrame pdtc\_DiagnosticTroubleCodeExt

#### **Negative Response Codes**

- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x31 requestOutOfRange

# UDS Service 0x19

#### ReadDTCInformation

Reads the status of a DTC

#### Justification:

Required for reporting DTC information

#### Limitations

Limited subfunction support

- 0x01 reportNumberOfDTCByStatusMask
- 0x02 reportDTCByStatusMask
- 0x03 reportDTCSnapshotIdentification
- 0x04 reportDTCSnapshotRecordByDTCNumber
- 0x06 reportDTCExtDataRecordByDTCNumber
- 0x07 reportNumberOfDTCBySeverityMaskRecord
- 0x08 reportDTCBySeverityMaskRecord
- 0x09 reportSeverityInformationOfDTC
- 0x0A reportSupportedDTC
- 0x0B reportFirstTestFailedDTC
- 0x0C reportFirstConfirmedDTC
- 0x0D reportMostRecentTestFailedDTC
- 0x0E reportMostRecentConfirmedDTC
- 0x12 reportNumberOfEmissionsRelatedOBDDTCByStatusMask
- 0x13 reportEmissionsRelatedOBDDTCByStatusMask

Limited DTCStatusMask support:

- 0x01 testFailed
- 0x02 testFailedThisOperationCycle
- 0x04 pendingDTC
- 0x08 activeDTC
- 0x80 warningIndicatorRequested

#### **Associated Blocks**

ppid\_Pid pff\_FreezeFrame pdtc\_DiagnosticTroubleCodeExt

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x31 requestOutOfRange

# UDS Service 0x22

#### ReadDataByIdentifier

Read data record values identified by one or more dataIdentifiers

#### Justification:

Required for reporting values by 16-bit PID

#### **Associated Blocks**

ppid\_Pid

#### **Negative Response Codes**

- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x14 responseTooLong
- 0x31 requestOutOfRange

# UDS Service 0x23

#### ReadMemoryByAddress

Read data in memory by address and size

#### Justification:

Required for reading memory

#### Associated Blocks

piso\_configuration

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x31 requestOutOfRange
- 0x33 securityAccessDenied

# UDS Service 0x24

Request scaling data for a 16-bit PID

#### Justification:

Required for reporting values by 16-bit PID scaling data

#### Associated Blocks

ppid\_Pid

#### **Negative Response Codes**

- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x31 requestOutOfRange

# UDS Service 0x27

#### SecurityAccess

Access data or diagnostic services which have restricted access

#### Justification:

Required to support seed-key security

#### Limitations

- Physical addressing only
- Optional parameter securityAccessDataRecord is not supported

#### Associated Blocks

pdg\_Permissions

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x22 conditionsNotCorrect
- 0x24 requestSequenceError
- 0x35 invalidKey
- 0x7F serviceNotSupportedInActiveSession

# UDS Service 0x28

#### CommunicationControl

Switch on/off the transmission/reception of certain messages

#### Justification:

Required to manage bus load

#### Limitations

- nodeldentificationNumber not supported
- Limited subfunction support
  - 0x00 enableRxAndTx
  - 0x01 enableRxAndDisableTx
  - 0x02 disableRxAndEnableTx
  - 0x03 disableRxAndTx

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x22 conditionsNotCorrect
- 0x31 requestOutOfRange
- 0x7F serviceNotSupportedInActiveSession

### UDS Service 0x2E

#### **WriteDataByIdentifier**

Write data to the location specified by a PID

#### Justification:

Required for writing values by 16-bit PID

#### Limitations

Physical addressing only

#### **Associated Blocks**

ppid\_Pid

#### **Negative Response Codes**

- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x31 requestOutOfRange
- 0x22 conditionsNotCorrect
- 0x72 generalProgrammingFailure

# UDS Service 0x31

#### RoutineControl

Execute a defined sequence of steps and obtain any relevant results

#### Justification:

Required for reprogramming support as well as arbitrary application based routines.

#### Limitations

Physical addressing only

#### **Associated Blocks**

pdg\_RoutineControl

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x22 conditionsNotCorrect
- 0x31 requestOutOfRange
- 0x24 requestSequenceError
- 0x33 securityAccessDenied
- 0x72 generalProgrammingFailure
- 0x78 requestCorrectlyReceived-ResponsePending

# UDS Service 0x34

#### RequestDownload

Initiate a data transfer to the ECU

#### Justification

Required for transferring data during reprogramming

#### Limitations

- Physical addressing only
- · Supported in reprogramming mode only
- compressionMethod not supported
- encryptionMethod not supported

#### Negative response codes

- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x31 requestOutOfRange
- 0x22 conditionsNotCorrect
- 0x33 securityAccessDenied
- 0x70 uploadDownloadNotAccepted
- 0x7F serviceNotSupportedInActiveSession

# UDS Service 0x36

#### TransferData

Transfer data to or from the ECU

#### Justification

Required for transferring data during reprogramming

#### Limitations

- Physical addressing only
- Supported in reprogramming mode only

#### Negative response codes

- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x24 requestSequenceError
- 0x71 transferDataSuspended
- 0x72 generalProgrammingFailure
- 0x73 wrongBlockSequenceCounter
- 0x7F serviceNotSupportedInActiveSession

# UDS Service 0x37

#### RequestTransferExit

Terminate a data transfer

#### Justification

Required to end a data transfer during reprogramming

#### Limitations

- Physical addressing only
- Supported in reprogramming mode only

• transferRequestParameterRecord is not supported

#### Negative response codes

- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x24 requestSequenceError
- 0x72 generalProgrammingFailure
- 0x7F serviceNotSupportedInActiveSession

### UDS Service 0x3E

#### TesterPresent

Indicate that the connection is still present and certain services that have been previously active are to remain active

#### Justification:

Mandatory for support of other services

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat

# UDS Service 0x85

#### ControlDTCSetting

Stop or resume the updating of DTC status bits

#### Justification:

This service was used in the EPB application

#### Limitations

- Limited subfunction Support
  - 0x01 on
  - 0x02 off
- DTCSettingControlOptionRecord is not supported

#### Associated Blocks

pdtc\_DiagnosticTroubleCodeExt

#### **Negative Response Codes**

- 0x12 sub-functionNotSupported
- 0x13 incorrectMessageLengthOrInvalidFormat
- 0x7F serviceNotSupportedInActiveSession